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Abstract 
 

This paper presents an experimental study of a Probabilistic 
Road Map (PRM) based obstacle avoiding algorithm,  for 
motion planning of a non-holonomic mobile robot in cluttered 
dynamic environment. The PRM approach uses a fast and 
simple local planner to build a network representation of the 
configuration space. It is trading off the distance to both 
static objects and moving obstacles in compute the travelled 
path. Our work has been implemented and tested on Player / 
Stage, real time robotic software, in extensive simulation 
runs. The different experiments that runs had demonstrate 
that our approach is well suited to control the motions of a 
robot in a cluttered environment and demonstrates its 
advantages over other techniques. 
 

1. Introduction 
 
Path planning is essential problem need to be solved in 
autonomous mobile robot. Chang [1] defines the capability of 
effectively planning as its motions are “Eminently necessary 
since, by definition, a robot accomplishes tasks by moving in 
the real world”. Especially in the context of autonomous 
mobile robots, path planning technique has to simultaneously 
solve two complementary tasks. Firstly, the task is to 
minimize the length of the trajectory from the starting 
position to the target location, and secondly, they should 
maximize the distance from obstacles in order to minimize 
the risk of colliding with an object. 

Automatic motion planning has application in many areas 
such as robotics, virtual reality systems, and computer-aided 
design. Although many different motion planning methods 
have been proposed, most are not used in practice since they 
are computationally infeasible except for some restricted 
cases like the case of mobile robots [2]. Indeed, there is 
strong evidence that any complete planner (one that is 
guaranteed to and a solution or determine that none exists) 
will require time that is exponential in the number of degree 
of freedom (dof) of the robot [3].  Recently, a new class of 
randomised path planning methods, known as “Probabilistic 
Roadmap Methods (PRMs)”, has shown a great interest 
among the scientists dealing with autonomous mobile robot’s 
path planning problem., The attention has focussed on 
randomized or probabilistic motion planning methods, 

notable among these are randomized potential field methods 
(RPP) [4], which work very well when the configuration 
space (C-space) is relatively uncluttered, but unfortunately 
they are also not successful in exist simple situations in which 
they need to work in [5][6]. Recently, a new class of 
randomized motion planning methods has gained much 
attention [7][8][9][6][10][11][12]. These methods, known as 
probabilistic roadmap methods (PRMs), use randomization 
(usually during pre-processing) to construct a graph in C-
space as a roadmap [13]. Roadmap nodes correspond to 
collision-free configurations of the robot. Two nodes are 
connected by an edge if a path between the two corresponding 
configurations can be found by a local planning method. 
Queries are processed by connecting the initial and goal 
configurations to the roadmap, and then ending a path in the 
roadmap between these two connection points. 

In this paper the PRM based obstacle avoidance algorithmic 
method for an autonomous mobile robot in dynamic 
environment is presented. The structure of this paper is as 
follows. In section 2 the mobile robot’s configuration space is 
defined mathematically with two subsections shows the 
failure and success probability of finding a path. In section 3 
the main algorithm is presented, followed by the, 
implemented GUI environment. Shortest path and obstacle 
avoidance techniques are presented in section 4 and 5. This 
paper is concluded in section 6 with future work in section 7.  
  

2. Configuration Space 
 
This section is written to provide some analysis of the running 
time configuration of PRM. The main objective is to show 
how probabilistic completeness can be proved for a given 
choice of planning problem, local planner and configuration 
generator. A PRM planner is probabilistically complete for 
any query, the probability of answering after building a 
roadmap goes to non-zero. In the following treatment, we 
analyse a simplified version of PRM which tries all pairs of 
connections in the roadmap. 

We begin by providing an analysis of PRM operating in 
Euclidean Rk space. Let Cf (free-configuration) be an open 
subset of [0,1]k and let ‘d’ be the Euclidean metric on Rk. The 
local planner for the PRM connects points fCyx ∈,

 when the 



straight line xy  lies in Cf. The measure µ denotes the volume 
of a region of space, for example µ([0,1]k)=1. For any 
measurable subset A⊂  Rk, µ(A) is its volume. The PRM we 
describe uses the uniform distribution on Cf for sampling 
points. If A⊂  Cf is a measurable subset and x is a random 
point chosen by the point sampling function then [14][12] 
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A path in free space consists of a continuous map γ:[0,1]→ 
Cf. The path is said to be from  (0) to  (1). The clearance of 
a path is the furthest distance away from the path at which a 
given point can be guaranteed to be in free space. If  is a path 
in free space then [14][12] 
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A. Failure Probability 
The map has static obstacles, where 0<ε is related to the 
path clearance, the minimum distance of a path to the 
obstacles. A result relating the probability of failure to the 
length of the isolated path and clearance was given. An 
extension of this result was made for when varied along the 
path. Finally, this result shows that the probability of failure 
of finding a particular path goes exponentially to zero as the 
number of points increase. The simplest of these results is 
related below.  

Theorem I.1: Let a,b∈Cf  such there exists a path  between 
them lying in the Cf . Then the probability PRM will answer 
the query (a,b) correctly after generating N points with 
probability greater than[12]:   
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An extension to this technique can be made for small-time 
locally controllable robots [19], such as car-like robots and 
tractor-trailer robots. The property exploited is that for every 
point for 0>x  and 0>ε , there exists 0>δ such that any 

point within δ distance of x can be reached by taking a path 
that stays within the ε  around x . A path with ε  clearance 

can thus be tiled with δ . Again, the probability of failure 
was shown to decrease exponentially as increases.  

B. Reachability Probability 
In this section, we relate an argument to determine how PRM 
road maps capture the connectivity of space using the model 
from the previous section, we begin from the observation that 
Cf  can be broken into a union of connected components 
Cf1,……,Cfj,…….. PRM samples a set of points N and 

computes the roadmap. We can think of N breaking into 
N1,……,Nj,… so that Nj   Nj ⊂ Cfj . The roadmap also breaks 
into components R1,……,Rj,… In this section, we bound the 
probability that every Rj in the roadmap is connected by 
assuming some visibility properties. We begin by defining the 
reachable set.  

This paper further formalized the notions of reachability and 
made use of measure. Concisely, for a connected set of points 
S, the -Lookout (S) is the subset of ‘S’  whose points ‘‘see’’ 
using the local planner more than a  fraction of the set of 
points which can be ‘‘seen’’ from . A space is ( , )-Expansive, 
if the subset -Lookout (S) is always larger than anα . 
Fraction of the measure of ‘S’ for every connected subset ‘S’ 
of the points reachable from any point in free space. Again, 
this paper provides a bound on the number of points in terms 
of ,  and  required to generate a path, as shown below. 

Theorem 1.2: 
Let  γ∈ [0,1] be a constant, and ‘M’ be a set of ‘2n+2’ points 
chosen independently and uniformly at random in free space 
‘F’ , which breaks into connected components Fj [12]. Let Rj be the roadmap defined by M on Fj. If  
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then with probability 1- γ, Rj 
  is connected. 

The configuration space is a powerful conceptual tool because 
it seems to be the natural space where the path planning 
problem lies.  
 

3. The Algorithm 
 
PRMs use randomization (usually during pre-processing) to 
construct a graph of representative paths in C-space (a 
roadmap) whose vertices correspond to collision-free 
configurations of the robot and in which two vertices are 
connected by an edge if a path between the two corresponding 
configurations can be found by a local planning method. The 
proposed path planning algorithm is as follows is:    
 
 1: Pre-processing of the environment.  
 2: Generate N points at random (node generation) in    
  the free configuration area. 
 3: Locate start and the goal points in the graph. 
 4: Connect the points that have certain distance  
  to each other (connections). 
 5: for each query of the form, “is there path from   
 start to end. 
 6: if paths from start to goal lie in.  
 then  
 7: Compute the shortest path (Djikstra’s shortest path). 
 8: else 
 9: return go to 2. 
 10: end if 
 11: end for 
 12: Reactive obstacle avoidance  
 Stop OR  Deviate  
 13:  Follow the planned path. 



PRMs have been shown to perform well in practice. In 
particular, after the roadmap is constructed during pre-
processing such as the one shown in figure.1, many difficult 
planning queries can be answered in fractions of seconds. 
Although PRMs are particularly suitable when multiple 
queries will be answered in the same static environment, the 
general PRM strategy can be used to solve single queries by 
only constructing useful portions of the roadmap. 

 

 
Fig.1: Pre-processing of environment 

 
A. Node Generation 
The first PRMs use uniform sampling in C-space to generate 
roadmap candidate nodes (collision-free configurations are 
retained); roadmaps are enhanced by further sampling in 
`difficult' regions. These methods are not well suited for 
dynamic environment, and their effectiveness decreases as the 
environments become more cluttered since uniform sampling 
of C-space is unlikely to yield configurations in narrow 
regions of C-space. To obtain improved roadmaps in crowded 
situations, we have used PRMs with random nodes generator 
which can explore maps that cannot be expected by the 
uniform samplers. Random node generation strategies are the 
methods used to select collision-free robot configurations to 
be used as nodes in the roadmap. A good node generation 
strategy will produce nodes that can be connected to form a 
roadmap that is representative of the connectivity and 
complexity of C-free. Ideally, the roadmap should contain 
nodes in every C-space crevice and corridor that robot can 
move freely in them (such as the environment shown in 
figure1). However, guaranteeing this requires the costly 
computation of the constraint surfaces which is what

 randomized methods seek to avoid. Every single node should 
come in the free area, and should have a safe distance form 
the obstacle, in another word the obstacles are scaled to make 
the robot moves freely if the path comes close to the 
obstacles. 

B. Connection 
After the collision-free roadmap candidate nodes are 
generated as shown in figure.2, they must be connected to 
form the roadmap as depicted in figure.3.  
 

 
Fig.2: Random nodes generation 

 

  
Fig.3: Nodes connection 

 
The basic idea is to attempt to connect selected pairs of 
roadmap nodes using some local planning method(s) as 
shown in figure.4; each successful connection identities can 
edge in the roadmap. To save space, the paths found in this 
stage are not recorded since they can be regenerated quickly 
when processing queries. The methods by which a PRM 
determines which (and how many) nodes to attempt to 
connect, and the local planner(s) selected to make those 
connections can crucially impact both the quality of the 
resulting roadmap and the running time of the PRM. Indeed, 
even though most PRMs greatly limit the number of 
connections attempted (say, to ten for each node), they still 
typically spend more than 95% of their pre-processing time in 
the connection phase. The general strategy of PRMs is to first 
make as many of the `easy' and `cheap' connections as 
possible, and then to use more sophisticated techniques to 



improve the roadmap's quality. For example, the PRM of 
[6][10] first tries to connect each node to the k (a parameter) 
closest nodes (as determined by some distance metric) using 
the common straight-line in C-space local planner, and then 
attempts to enhance the roadmap by sampling more nodes in 
identified difficult regions and/or by using more sophisticated 
local 
 

4. Shortest Path from the PRMs 
 

In figure.3, number of cases has been selected to show all 
aspects of the operation of PRM algorithm. Our algorithm 
provides a select a shortest path to execute. Note that it starts 
by assigning a weight of infinity to all nodes, and then 
selecting a source and assigning a weight of zero to it. When 
a node is (start point) selected, the weights of its neighbours is 
calculated to obtain a trajectory which connects the starting 
point to the Goal which has the least weight in our case the 
weight is the distance between nods as seen in figure 4. Once 
the selection of shortest path has made, a smoother has been 
added so that the robot will move the less unwanted turning, 
and maintain it workable for a non-holonomic robot. 
 

 
Fig.4: Shortest Path selection with smoother 

 
Figure.5 shows the simulation of the Pioneer-2DX robot 
(illustrated in figure 6) in player/stage [15] with some other 
static and moving obstacles. GUI is made in g2 to show the 
robot trajectory as shown in figure 7. The thinner line shows 
the actual path of the robot obtained from PRM and the 
thicker line is its actual trajectory obtained from real time 
simulation. As can be seen that robot always maintains its 
actual trajectory with PRM path (thick line). 
 

5. Obstacle Avoidance on PRM 
 

A simple SICK LMS200 laser range finder has used for the 
obstacle avoidance purposes. Once the command has sent to 
the motor controller of the robot it starts moving along the 
path as illustrate in figure.7. If an obstacle obstructs the path 
of the robot, the Laser information made it possible for the 
 

 
Fig.5: Robot Simulation 

 
Fig.6: Pioneer 2DX 

 
robot to decrease its speed and waits until the obstacle clears 
the path. In another case, we have changed the start and the 
goal position and obtained the same results of the PRM for 
any other start and goal position all over the free 
configuration area, and if the obstacle comes towards the 
robot, it deviates from its path and gives way to the obstacle 
to pass and returns back to its original path and continue the 
trip as can be seen in figure 8. The diverted trajectory (thicker 
line) shows the temporary deviation of robot from its PRM 
path and after obstacle avoidance it returns to its path again. 
 

6. Conclusion 
 
In this paper, we reformulated the robot path-planning 
problem in terms of probability spaces, measures, and 
computation of the transitive closure of a given local relation. 
We have shown that if it was possible to guess a path between 
two given points at random, then ‘n’ sets of strictly positive 
measure existed, so that guessing at least one point in each set 
would produce some path between these points. This allowed 
us to bind the probability of failure and reachability in terms 
of ‘n’ and successful generation of an optimal path with 
respect to nodes generated on the map. This algorithmic 
approach in the moving obstacles environment is unique in a 
sense that it endorse the shortcomings of the other path 
planning methods like potential field, Vector Field, and 
Histogram VFH, like local minima and oscillation of 
trajectory in the corridors. 
 



 

 

 
Fig. 7: Robot trajectory and movement along the path. 

 

 

 
Fig. 8: Obstacle avoidance and continuing on the original 

path. 
 

 
7. Future Work 

We would like to extend the research of path planning using 
PRM in dynamic environment with the estimation theory used 
for the detection of Obstacle coming across the robot’s way. 

Also efficient localisation methods, like laser beacon based 
can make it possible, to give us an exact robot’s position 
when it deviates from the path or a re-planner can be 
introduced at that time to replan its path from the deviation, 
only hitch involved in this criteria is that whole system 
becomes so computational expensive that robot might stop in 
front of the obstacle or after crossing it. 
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